

1

Smart Contract Security Audit Report

For

 Galaxy

Date Issued: July 11, 2023

Version: v1.0

Confidentiality Level: Public

2

Contents

1 Abstract ... 3

2 Overview ... 4

2.1 Project Summary .. 4

2.2 Audit Scope ... 5

3 Project contract details.. 6

3.1 Contract Overview ... 6

3.2 Code Overview ... 8

4 Audit results ... 11

4.1 Key messages .. 11

4.2 Audit details ... 12

4.2.1 Privileged role.. 12

4.2.2 Redundant codes .. 13

4.2.3 Insecure order of transfers ... 15

4.2.4 Possible underfunding of transfers ... 17

4.2.5 Can add superiors maliciously .. 21

5 Finding Categories .. 22

3

1 Abstract

This report was prepared for Galaxy smart contract to identify issues and
vulnerabilities in its smart contract source code. A thorough examination of Galaxy
smart contracts was conducted through timely communication with Galaxy, static
analysis using multiple audit tools and manual auditing of their smart contract
source code.

The audit process paid particular attention to the following considerations.

• A thorough review of the smart contract logic flow

• Assessment of the code base to ensure compliance with current best practice
and industry standards

• Ensured the contract logic met the client's specifications and intent

• Internal vulnerability scanning tools tested for common risks and writing
errors

• Testing smart contracts for common attack vectors

• Test smart contracts for known vulnerability risks

• Conduct a thorough line-by-line manual review of the entire code base

As a result of the security assessment, issues ranging from critical to informational
were identified. We recommend that these issues are addressed to ensure a high
level of security standards and industry practice. The recommendations we made
could have better served the project from a security perspective.

• Enhance general coding practices to improve the structure of the source
code.

• Provide more comments for each function to improve readability.

• Provide more transparency of privileged activities once the agreement is in
place.

4

2 Overview

2.1 Project Summary
Project Summary Project Information

Name Galaxy

Start date July 6, 2023

End date July 11, 2023

Platform BNB Chain

Contract type DeFi

Language Solidity

File Achievement.sol, AddressTree.sol, UserInfo.sol,
GalaxyHome.sol, GalaxyLevels.sol, GalaxyMine.sol,
GalaxyNodes.sol

2.2 Report HASH
Name HASH

Galaxy 8B096CF2248AEA8CD5606C95F4990457

5

2.3 Audit Scope
File SHA256

Achievement.sol BC7F05BBF74A2AD0783DA4CE706FC3C4E857E004
232C94435DA2BA211F1E847D

AddressTree.sol A670A4B7A34D3ECEA59B5DE5DC947AC52EC49B29
2E088CE5EEFCA10A6D1F80F6

UserInfo.sol DFB62349AACDDD211713CDCA32FA409372188EF3
9BCABC4B162479B500C215E5

GalaxyHome.sol 533635625877AB13A398C797501A63B16F3DEDED
F7605E8269DB3BC00928A231

GalaxyLevels.sol BFB5F9DA298E9B995BE1C23604287C6B7273F0E5
AAB292F0015168A6AF8365FC

GalaxyMine.sol 8CAFC364267CCD723D41D2674C13EA33E06CE9A0
3B1A7B523C016B1C923AE455

GalaxyNodes.sol 89EDC5EF5D596AE9947A45CF7344B854A97B01E2
90FB380DDA0C37B3C3D5B4B2

6

3 Project contract details

3.1 Contract Overview

Achievement.sol

The contract is an abstract contract that implements the management functions of
user performance, including the recording of deposits, the calculation of levels, the
allocation of rewards etc. It provides functions for querying user's performance
information, calculating reward allocation list, etc., and provides support for
upgrade operations. Specific The specific logic of rank calculation and reward
allocation needs to be implemented in the subcontract.

AddressTree.sol

The contract is an abstract contract that implements an address tree management
function that establishes hierarchical relationships between addresses and records
the address depth in the tree. It provides functions for querying the list of direct
family addresses and the list of direct push-down addresses of addresses, and
provides the user functions for users to add higher-level addresses.

UserInfo.sol

The contract is a library contract, which mainly implements the
createPendingReward() method and implements the UserInfo structure.

Migrations.sol

The contract is a simple migration contract that manages the migration state of the
contract. The owner of the contract can set the identifier of the last completed
migration by calling the setCompleted function to set the identifier of the last
completed migration.

GalaxyHome.sol

The contract implements a user level system where users can participate in the
system by upgrading their level and receive rewards based on their level and
contribution rewards. The contract defines constants, structures and variables that
provide the ability to upgrade and receive rewards, and manage the distribution of
rewards and asset recipient.

7

GalaxyLevels.sol

The contract mainly implements the function of storing the user's rank conditions
and getting the actual rank of the user; and also implements the function of
managing the user's performance by inheriting the Achievement contract
implements the function of managing user performance.

GalaxyMine.sol

The contract implements the user's mining and reward collection functions. The
user can participate in mining by setting the mining arithmetic, calculate the user's
revenue based on the arithmetic and the network-wide arithmetic, and then transfer
the revenue to the user's account through the receive reward function. The
administrator can allocate the rewards to each miner proportionally by assigning
the rewards function.

GalaxyNodes.sol

The contract implements the management and distribution functions of node
rewards, including setting node arithmetic, calculating user revenue, receiving
rewards and distributing rewards, etc. operations.

8

3.2 Code Overview

Achievement Contract

Function Name Visibility Modifiers

__Achievement_init Internal onlyInitializing

_setLevelRewardProps Internal -

levelOf Public -

childrenAchievementsOf External -

distrubutionRewards External -

distrubutionsForefathers Public -

_increase Internal -

levelUpgrade External -

pendingLevelOf Public -

whenLevelUpgraded Internal -

AddressTree Contract

Function Name Visibility Modifiers

initialize Public initializer

getForefathers External -

childrenOf External -

makeRelation External -

_makeRelationFrom Internal -

9

GalaxyHome Contract

Function Name Visibility Modifiers

initialize Public initializer

_rewardIncreasedHandle Internal -

setStaticRewardPerday External onlyRole(MANAGER_ROLE)

setAssetReceiptor External onlyRole(MANAGER_ROLE)

setAccountStart External onlyRole(MANAGER_ROLE)

_getParentOfDeep Internal -

upgrade External -

earnedStatic Public -

earnedTotal Public -

takeReward External -

GalaxyLevels Contract

Function Name Visibility Modifiers

initialize Public initializer

setLevelRewardProps External onlyRole(MANAGER_ROLE)

setAccountLevel External onlyRole(MANAGER_ROLE)

pendingLevelOf Public -

updateStartDelegate External onlyRole(DELEGATE_ROLE)

increaseDelegate External onlyRole(DELEGATE_ROLE)

10

GalaxyMine Contract

Function Name Visibility Modifiers

initialize Public initializer

earned Public -

takeReward External -

setMinerDelegate External onlyRole(DELEGATE_ROLE)

distrubutionReward External -

GalaxyMine Contract

Function Name Visibility Modifiers

initialize Public initializer

earned Public -

takeReward External -

setNoderPower External onlyRole(DELEGATE_ROLE)

distrubutionReward External -

11

4 Audit results

4.1 Key messages
ID Title Severity Status

01 Privileged role Low confirm

02 Redundant codes Informational confirm

03 Insecure order of transfers Low fixed

04 Possible underfunding of transfers Informational confirm

05 Can add superiors maliciously Low confirm

12

4.2 Audit details

4.2.1 Privileged role

ID Severity Location Status

01 Low GalaxyLevels.sol: 32, 44 confirm

Description

Privileged roles can update the levelRewardProps variable and
userInfoOf[account].level via setLevelRewardProps() and setAccountLevel(), which
denote the level of rewards, respectively, and may result in larger rewards if the
privileged roles are maliciously controlled or level increase.

Code location:

Recommendation

It is recommended to use multi-signature to manage privileged roles in project
contracts.

Status

confirm.

Will recommend customers to use multi-sign contracts.

13

4.2.2 Redundant codes

ID Severity Location Status

02 Informational Achievement.sol: 260, 264 confirm

Description

The levelUpgrade() method calls the whenLevelUpgraded() method, but there is no
contract-specific logic in that method, and if no logic is written for that method, the
method is redundant code.

Code location:

Recommendation

It is recommended to remove method code in the contract that does not implement
the logic.

14

Status

confirm

Achievement.sol is an abstract contract and can't be used directly, the official code
used in this project is GalaxyLevel.sol, whenLevelUpgraded is implemented as a
dummy method in the sub-contract, so it's not redundant code. Its role is to handle
some additional business logic after the user has finished upgrading.

15

4.2.3 Insecure order of transfers

ID Severity Location Status

03 Low GalaxyHome.sol: 165, 180 fixed

Description

The user transfer is received in the upgrade() method, but since the mode of this
method is similar to a deposit operation, updating the deposit status when the user
has not transferred the funds to the contract may result in a reentry situation. So it
is safer to update the variable when the user funds are transferred.

Code location:

16

Recommendation

It is recommended to transfer the money first and then go ahead and update the
user's status to avoid any security issues.

Status

fixed.

17

4.2.4 Possible underfunding of transfers

ID Severity Location Status

04 Informational GalaxyHome.sol: 185, 247 confirm

Description

If receiptor.prop is greater than 50%, it may lead to transfer away other address
allocation funds, currently the contract will first transfer 30% to staticAssetPool,
trasnfer to nodes funds for 20%, if here receiptor.prop is greater than 50%, due to
the trasnfer to nodes funds are only authorized, the funds have not been
transferred, so transferring funds at 50%-70% can transfer trasnfer to nodes funds
as well. If the transferred funds are more than 70%, it may cause the transfer to fail.

The current receiptor.prop is set by the privileged role, it is recommended to set the
value not to exceed 50%.

Code location:

18

19

When getting rewards through this contract, since the rewards are sent directly fro
m the contract, it is necessary to determine that the contract has a sufficient amount
 of funds to provide the transfer. Avoid having insufficient funds in the contract, whi
ch may result in a transfer failure.

In addition to this, the GalaxyMine contract and GalaxyNodes contract also suffer fro
m this issue.

GalaxyMine.sol

20

GalaxyNodes.sol

Recommendation

It is recommended that you subtract the funds already allocated before transferring,
and judge whether the contract is fully funded at the time of transfer.

Status

confirm.

We added some assertions appropriately, but not all of them, we think the transfer
fails and the transaction should roll, not adding too many assertions is in the gas
consideration, because balanceOf to determine the balance is an external call that
generates gas.

GalaxyHome.takeReward()-fixed

21

4.2.5 Can add superiors maliciously

ID Severity Location Status

05 Low AddressTree.sol: 66, 86 confirm

Description

The makeRelation() method is used for users to add superiors, but since there is a
length limitation for adding superiors, if a malicious user adds a certain superior in
bulk, it may result in other users not being able to continue adding.

Code location:

Recommendation

Modify the logic of adding superiors to avoid a situation where a superior address is
used maliciously.

Status

confirm.

Keep it the same, malicious attacks cost money. If a malicious attack still occurs, the
contract can be updated to remove this restriction, or the restriction can be
removed outright, which needs to be determined with the requirements.

22

5 Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of
components that act against the nature of decentralization, such as explicit
ownership or specialized access roles in combination with a mechanism to relocate
funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate
different, more optimal EVM opcodes resulting in a reduction on the total gas cost of
a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as
overflows, incorrect operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as
owner-only functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain
edge cases that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory,
such as the result of a struct assignment operation affecting an in-memory struct
rather than an in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e.
incorrect usage of private or delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather
comment on how to make the codebase more legible and, as a result, easily
maintainable.

23

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet
contain different code, such as a constructor assignment imposing different require
statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase
in their raw format and should otherwise be specified as constant contract variables
aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it
impossible to compile using the specified version of the project.

24

Disclaimer

This report is issued in response to facts that occurred or existed prior to the
issuance of this report, and liability is assumed only on that basis.
Shield Security cannot determine the security status of this program and assumes
no responsibility for facts occurring or existing after the date of this report. The
security audit analysis and other content in this report is based on documents and
materials provided to Shield Security by the information provider through the date
of the insurance report. in Shield Security's opinion. The information provided is not
missing, falsified, deleted or concealed. If the information provided is missing,
altered, deleted, concealed or not in accordance with the actual circumstances,
Shield Security shall not be liable for any loss or adverse effect resulting therefrom.
shield Security will only carry out the agreed security audit of the security status of
the project and issue this report. shield Security is not responsible for the
background and other circumstances of the project. Shield Security is not
responsible for the background and other circumstances of the project.

